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ABSTRACT

Using the properties of the related orthogonal polynomials,
approximate solution of a system of simultaneous singular in-
tegral equations is obtained, in which the essential features
of the singularity of the unknown functions are preserved.

In the system of integral equations of first kind, the funda-
mental solution is the weight function of the Chebishev poly-
nomials of first or second kind. In the system of singular
integral equations of second kind with constant coefficients,
the elementsof the fundamental matrix are the weights of

Jacobi polynomials. The approximate solution is expressed as
the fundamental function, representing the singular behavior

of the unknown functions, multiplied by series of proper ortho-
gonal polynomials with unknown coefficients. The techniques

of deriving the system of algebraic equations to determine

these coefficients is described.

*

The work is supported by the National Aeronautics and Space
Administration under Grant No. NGR 39-007-011.
**Department of Mechanics, Lehigh University, Bethlehem, Penn-
sylvania.



1. INTRODUCTION

The system of singular integral equations of the form

M 1 M .
% aij(t) ¢j(t) + {] % bij(T) ¢j(T) -t

[=X

1 M
+ {] Z kij(t’T) ¢j(T) drt = f1(t)
(i = 1,---M), (-1<t<1) (1)

may be found in the formulation of many boundary value problems
containing geometric singularities. In (1), the functions aij’

b and f, are given on (-1,1) and satisfy a Holder condition,

1]
the kernels kij are also known and satisfy a Holder condition
in each of the variables t and v, and the unknown functions ¢;
are likewise required to satisfy a Holder condition. In the
known physical problems of practical interest, aij and bij are
constants and M, the number of the unknown functions, is 2 or
3. Among the physical examples, we may mention the elasto-
static problems in shells, composite materials and layered
media containing cuts, diffusion problems in nonhomogeneous
media containing partially insulated line barriers, wave dif-
fraction problems in homogeneous media containing rigid line

barriers or cuts, and contact problems in the presence of

friction.



The general theory of the system of integral equations

(1) is given in [1], where a standard technique of reducing it
to a system of Fredholm integral equations is discussed. How-
ever, this technique is based on the assumption that the fun-
damental matrix corresponding to the solution of the dominant
system is somehow obtained. Aside from the difficulty encoun-
tered in obtaining the fundamental matrix, for which no general
method is given, in practice, the direct method of reducing
the system of singular integral equations to a ﬁystem of Fred-
holm equations is rather cumbersome. For these reasons, the
development of an approximate method preserving the correct
nature of singularities of the unknown functions seems to be

very desirable.

In physical problems, the ends + 1 are points of geometric
singularity. Usually the investigation of the behavior of the
unknown functions in the neighborhood of these singular points
is one of the main objectives in solving the problem. 'Gener-
ally, physical arguments provide sufficient information about
such behavior to fix the index for each unknown function. 1In-
variably, these arguments simply amount to stating that if the
unknown function is a potential (e.g., temperature, displace-
ment, velocity potential), it has to be bounded at the singular
points, and if it is a flux-type quantity (e.g., stress, heat
flux, velocity), its value at singular points would be infinite
but integrable. Thus, in the case of a single unknown function,
solving the dominant equation and fixing the index by means of
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physical arguments, one may easily obtain the fundamental func-

tion of the integral equation.

In a singular integral equation with constant coefficients,
the fundamental function turns out to be the weight function
of some well-known orthogonal polynomials. For example, in
the integral equation of first kind, the fundamental function
js the weight of Chebishev polynomials of first and second
kind for the values of the index « = 1 and ¢« = - 1, respec-
tively, and in the singular integral equation of second kind,
the fundamental function is the weight of Jacobi polynomials.
Thus, using the properties of the related orthogonal polynomi-
nals, an approximate solution of the integral equation may be
obtained in which the essential features of the singularity of
the unknown function is preserved. 1In [2], by an indirect use
of the properties of Chebishev polynomials, the approximate
solution of singular integral equation of first kind has been
obtained. The problem has also been considered in [3] in
rather general terms. More notable and somewhat more detailed
applications using the properties of Jacobi polynomials appeared
in recent papers [4] and [5]. In [5], a special case of (1)
is considered in integrated form. Another technique to obtain
an approximate solution to a singular integral equation of
first kind is described in [6], in which instead of the proper
orthogonal polynomials a power series is used and the unknown

coefficients are obtained by the method of least squares.



In what follows, we will first consider the system of sin-
gular integral equations of first kind. In some physical prob-
lems, the kernels kij contain logarithmic singularities. For
better accuracy in the subsequent quadratures involving kij’
we will assume that the terms containing these singularities
are also separated and remaining Fredholm kernels are bounded.
We will then consider the system of integral equations of
second kind with constant coefficients, obtain the fundamental
matrix and describe two different approaches to find an approx-

: imate solution.

2. SINGULAR INTEGRAL EQUATIONS OF FIRST KIND, « = -1

Consider the system of singular integral equations (1) in

which the coefficients aij are zero, bij

the kernels kij contain no weak singularities but may have

are given constants,

logarithmic singularities having also constant coefficients

which are assumed to be separated. We thus have

1 M dr 1 M
{] ) b_ij ¢j(r) —1 + {] ) Cij ¢j(T) log |t-t| dt
T M .
+ [] ) kij(t’T) ¢j(T) dr = fi(t)’ (i = 1,---M), (2)
(-1<t<1)

where the matrix bij is nonsingular, kij are known and bounded

in the closed interval -1<(t,t)<1, and f, are given functions

satisfying the Holder condition
-5-



[f(t) - f(z)] < Alt-t|", (0<u<1), (-1<(t,7)<1)

Considering the dominant part of each equation in (2), the

.(t) may easily be

fundamental functions for wk(t) =) bkj ¢J

determined to be

1/2 + A& (]+t)- 1/2 + xﬁ

R (t) = (1-t) , (aap =0, 1))

(3)

The arbitrary integers A&, AE are determined through physical
arguments concerning the singular behavior of wk(t) at + 1.

If v, is bounded or infinite but integrable at + 1, we have

g <1, -1 < - % s <1

_1<%

The sum - (xé + AE) = K is known as the index of the corre-
sponding equation and will have a value of - 1, 0 or 1. Thus,
if the functions b are bounded and have the same behavior at

+ 1, « = - 1 and the fundamental functions are

R (t) = (1-t2)172 (4)

In this case, in addition to the system of equations (2),

the solution must satisfy the following consistency conditions:

1 M

1
f [fk(t) = [] % (kij (tsT) + cC. ]09 It-Tl) ¢j(T) dT]

- iJ

R—:‘(‘-ﬂ =0, (k= 1,--,M) (5)
(6)



» —

Noting that the fundamental function Rk(t) is the weight of
the Chebishev polynomials of second kind, to obtain an approx-

" imate solution for (2), we will proceed as follows. Letting

Un(t)3 (.I = ]s""'aM) (6)

N
03 (t) = (- V2 0 ag

we observe that the singular nature of the functions O is
preserved, where Un(t) is the Chebishev polynomial of second
kind and Ain (i = 1,---M; n = 0,--N) are constant coefficients.

Now, using the property [7]

1/2
1 Un(T)(]-TZ)

-t

: dr = -« T ,4(t) (7)

and defining

1
[ U (¢)(1-12)172 10g |t-7]| dr

[, U =V (t)
(8)
}] Ki3(t:0) Uple) (1-22)/% de = gys (1)
from (2), we obtain
M N
jz] nzo [- wbys Agp Taar(t) + cyg Agy Vo(t)
+gign(8) Agpd = Fi(E), (3= 1,--0M), (<1<t<]) o (9)

where T _(t) is the Chebishev polynomial of first kind and v (t)
-7-



is given by

1

- 5 (t2 + 5+ 10g 2), (n = 0)
Vo (t) = - T"ﬁt) - T";f;t) , (n=1,3,5,---) (10)
T
(n = 2,8,--)

To obtain the unknown constants Ajn’ in (9), we multiply

1/2

both sides by Tk(t)(l-tz)' and integrate from - 1 to 1.

Using the orthogonality relation

] 0, (n#k)
[ Ta(8) T() (1-22)° V2at = o, (n=k=0) (11)
) 75 (n=%k>0)

and defining

= [ v (t) T (t)(1-t2)" /2 q¢

a
nk 1N k

= ] o= 1/2
B'ijnk = [] 91Jn(t) Tk(t)(1't ) dt (]2)

1
Fik = 1 fi(8) T(0) (-8 172 gt

from (9) we obtain



M N

M
l" -
Sz L Py Akt jZ1 LoCeqs Agn an * Bigng Agn) < Fyy

(.i = ]’—-,M)s (k

091,""'9N)’ (AJ’-] = 0) (]3)

Equation (13) provides a system of algebraic equations to de-

termine the coefficients Ajn (j =1,--,M, n=0,1,--,N).

In (13), the matrix (ank) is bi-diagonal and is given by

a K = 0 (k #n, k #n + 2)

=2 (3+%g2), (k=n-=0)
= %%, (k = n > 0)
.n2
=-T(-nTz)-,(k=n+2,n_>_0) (]4)

1

Noting that Ajk-] = 0 for k = 0, To(t) = 1, and considering
the definitions (6), (8) and (12), it is seen that the first set
of M equations obtained from (13) by letting k = 0 is equivalent
to the consistency conditions given by (5). Hence, using the
foregoing technique, the conditions of consistency are satis-
fied without any reference to or requirement of certain oddness

- evenness properties of the functions ¢5 5 f. and kij'

.i
In the procedure outlined above, the main bulk of the
numerical work lies in the evaluation of the integrals in (8)

and (12), which may be considerable if one considers the fact

-9-



that the kernels kij are, in most cases, either very compli-
cated functions or given in terms of improper integrals. How-
ever, note that all the integrals in (8) and (12) are of
Gauss-Chebishev type and may easily be evaluated by using the
proper quadrature formulas given by

1

[ h(t)(1-t2)" V2 gy - g Wi h(t,)

~(15)
=X = . (2i-T)w
W, = D’ ti = CO0S 65, B, * b
with the related polynomial Tn(t) = Tn(cos ) = COS neo,
! 1/2
[ h(t)(1-t2) dt = g W h(ti)
-1
(16)
_ — - - (i)
W, D+ sin ei, ti cos ei, ei ~E;T——

: . - _ sin (n+1) s
with the related polynomial Un(t) = Un(cos 8) = Sin s .
In practice, this basic simplicity of evaluating the coeffi-
cients @k and Bijnk would make it possible to take into ac-
count large number of terms in the series (6) resulting in a

high degree of accuracy for the approximate solution.

3. SINGULAR INTEGRAL EQUATIONS OF THE FIRST KIND, k =1

If the unknown functions ¢j(t) are infinite but integrable

at + 1, the index of the equations and the fundamental func-

-10-



tions will be
c =1, R (t) = (1-12)7 /2 (17)

Observing that Rk(t) is the weight of the Chebishev polynomials
of the first kind, Tn(t), the approximate solution of (2) may

be expressed as

N
o8 = (1-e2)” VE Ty T(0), (3= 1 (8
Using the relation, [7]
! 1/2 d 0, {n=0)
[T (1) (1-12) —f - (19)

-1

and defining

1
T (1)(1-12)" /2

log |t-t| d7v = W _(t)
1N

n

1
[yt T (1-2) V2 4¢ = h,. (t)

1 1jn
1 1/2

Yok = j] wn(t) Uk(t)(l-tZ) dt (20)
- (t) U (t)(1-t2)"/2 gt

Pijnk " [] ijn k

1
Fo = J. f1(8) u (0)(1-22) /% at

-11-



from (2), multiplying both sides by Uk(t)(l-’cz)]/2 and inte-

grating, we obtain

oM MoN
T% bis Byksr * J.__Z_] nZO (¢i5 Bjn Ynk * Pijnk Bjn) = Fik

(1 = ]a""M)3 (k = Oa""N) (2])

where the orthogonality relation

] 0 (n # k)

(n = k)

EVE

has been used. In (20), the functions wn and the bi-diagonal

matrix Yok May be evaluated, giving

- 7 log 2, (n = 0)
Wn(t) = %Tn(t)s (n = 133955"‘)
2T n/2 -
%Tn(t) = H— (']) [} (n = 2,4""‘)
(22)
Yok = - %i log 2, (n = k = 0)

n
‘:l
—
3
1
ol
v
o
~




In the case of « = 1, generally there are some additional
(physical) conditions which are not met by the solution given
by (18) and (21). 1In the function-theoretical approach, the
solution of the system of integral equation contains a set of
arbitrary (complex) constants which are determined by using
the additional conditions. In most physica] problems, these
conditions consist of specifying first and second moments of
the functions ¢i(t) over the interval (-1,1), i.e.,

1 ]
j ¢-‘(t) dt = P.|a f t¢](t) dt = MT.’ (1 = 1,--,M) (23)
] 1

where P., M. are given constants. Substituting from (18) into

i
(23) and using the orthogonality relation (11), it is seen

that

P 2M,

-'—1'_ = 1 i = - -
B'iO - T 3 Bi] T s (.l ]s ’M) (24)

The remainfng M x (N-1) constants Bij may then be obtained from
(21) by letting k = 2,3,--,N. The conditions given in the form
other than (23) may be handled in a similar way. If the prob-
lem possesses any kind of symmetry, one may retain only even

or odd terms in (6) and (18) which may result in considerable

reduction in numerical work.

-13-




4., GENERAL REMARKS

Referring to (3), if the index of the equations is zero,
that is, if the function is bounded at one end and unbounded
at the other, one may try to extend the definition of the func-
tions and the kernels outside the interval of (-1,1) and reduce
the problem to one having an index « = 1. Or, observing that

1/2 1/2

the fundamental function for « = 0, (1-t) (1+t) "~ , is the

weight of Jacobi polynomials pnG/Z, - ]/zkt), using the proper-
ties of these polynomials, a procedure similar to that given

above may be followed to obtain an approximate solution.

In practice, the quantities representing the strength of the
singularities at + 1 have great physical significance and, re-

ferring to (6) and (18), may easily be expressed as

- - 172 N N
Tim  ¢.(t)(1-t2) = g Ay, U (1) = Y (n+1) Aips (k==1)
t—)I] n=oQ
(25)
N N
: 1/2 _ )
1121 p; (£)(1-£2) /¢ = g By T,(1) = nzo Bins (k=1)

If the kernels kij(t’T) in (1) are simply Holder-continuous
having no further restrictions on them, i.e., if they contain
weak as well as logarithmic singularities, the technique des-

cribed above is still applicable. In this case, however,

-14-



special attention must be paid to quadratures involving kij'

If the coefficient matrices (bij) and (Cij) in (2) are not
constants but known functions, the matrix (bij) being nonsingu-
lar in the interval (-1,1), by defining wi(t) =) bij(t) ¢j(t),
the system of equations (2) may be reduced to one of constant
coefficients. In this case, however, the coefficients @K in

(13) and Yok 0 (21) may not be obtainable in closed form.

Finally, no major difficulty would arise in the application
of this method to the system of equations with mixed indices,
i.e., the case in which « = - 1 for some and « = + 1 for the

rest of the unknown functions ¢i'

5. SYSTEM OF SINGULAR INTEGRAL EQUATIONS OF SECOND KIND

Consider the following system of integral equations of

second kind

b b
] d _
Ap(t) + - £ Bo(1) rit + £ K(t,t) ¢(t) dv = f(t) (26)
(a<t<b)
where the coefficient matrices A = (aij)’ B = (bij) are con-

stant, the matrices A + B are nonsingular, and the known func-

tions f = (fi) and K = (k.:) are Holder-continuous in the in-

iJ
terval (a,b). The solution satisfying a Holder condition and

having certain singular behavior at a and b is sought. To

-15-



solve the problem, we first find the fundamental matrix by

solving the homogeneous dominant system

b .
As(t) + 1o [ Bo(x) 9 = 0, (a<t<b) (27)
a

Defining the matrix o(z) = (¢j) by

b
‘I’j(z) = 2,”1 £ s (j = ]"'aM) ‘ (28)

equation (27) may be written as

(A+B) o7 (t) = (A-B) o (t), (a<t<b) (29)

where o and o correspond to the boundary values of the sec-
tionally holomorphic functions ¢j(z). We now look for the
solution of the homogeneous Riemann-Hilbert problem (29) in

the form
2(z) = rw(z), wi(t) = 1w (t) (30)

where w is a scalar function and the column matrix r and the
coefficient A are constants. Substituting (30) into (29), we

obtain the following eigenvalue problem
(A-B)r = A(A+B)r (31)

Let the eigenvalues and eigenvectors obtained from (31) be

Ays=-=> Ay and (r.]),-—-,(rjM). Corresponding to each 1., we

J
-16-



obtain a fundamental function wk(z) as follows

We(t) = a we(t) (ko= 1,--,M)
(32)
%y By
w (z) = (z-a) * (z-b)
where

a =g P ARt v By = o P IR+ vy

log A log 2
' s Al = ____k_ " -\n_________k
o T TR Tt Ty o OB T o

- ]<a&+yé<], - ]<ak+y£<]

and the integers y&, Y are chosen in such a way that the be-
havior of the fundamental functions wk(z) at a and b is com-
patible with the expected singular behavior of the unknown

functions ¢j(t), (i.e., either bounded or infinite but inte-

grab]e). The constant
ke = - (o*+8 ) = = (yptvyp)

is known as the index of wk(z). In the physically important

problems, the eigenvalues A are real and negative, giving

I Tog|x | Tog|a |

. =1 .
a T r ot s B Tty 2. 1
Kk = - ], 0, ‘I

-17-



The square matrix
wj(Z)) (33)

if often referred to as the fundamental matrix of the boundary
value problem (29). Once W is found, the general solution of

(27) and (29) may be obtained as

|
He~—=

o, (2) = i wj(z) P.(z)

J

j=1

(34)

o7 (t) - o (t), (k = 1,--,M)

9 (t)

where Pj(z), (j = 1,--,M), are arbitrary polynomials compatible

with the behavior of ) at infinity.
It is easy to see that
(A+B) W' (t) = (A-B) W™ (t) (35)

If we now consider the nonhomogeneous problem

a
(36)
(A+B) o' (t) = (A-B) o (t) + g(t), (as<t<b)
by using (35), we obtain
1.t 21 4.1
(W) = (W '¢) + (MW) g, M=A+B (37)



From (37), the general solution of (36) may be obtained as

-1
b

o(z) = W21 1 (it (2)) g(x) 95+ u(2) P(2) (38)
a

where the elements of the matrix P(z) = (Pn(z)) are arbitrary
polynomials compatible with the behavior of #(z) at infinity.
In the special case of real and negative eigenvalues As we

have,

(a) « =1, ¢k(t) is infinite but integrable at t = a,
t = b; for a solution vanishing at infinity Pn = Cn = constant;
the constants C],—-CM may be obtained from the physical condi-

tions as explained in Section 3.

(b) « = 0, ¢k(t) is bounded at one end and infinite and

integrable at the other; (38) gives the solution with P(z) = 0.

(¢) «=-1, ¢k(t) js bounded at both ends; (38) gives the
solution with P(z) = 0, provided the following consistency con-

ditions are satisfied:
b -1
[ (m*) g(t) dt = 0 (39)
a

We now return to the integral equation (26) and first des-

cribe a direct method to obtain an approximate solution. Let



where the known functions pn(t) form a complete system in
(a,b) and c;, are undetermined constants . Comparing (26) and
(36), it is seen that, aside from the unknown constants Cine
the matrix g(t) is known:

9, (t) = f,(t) - n§1 Cn Pplt) (41)
Thus, the solution of (26) can be obtained in closed form in
terms of the undetermined constants c. ~from (38) and

o () = o3(t) - a3(t) (42)
The system of equations to obtain Cin is obtained by substi-

tuting ¢k(t’cin) into (40) and using a weighted residual method.

_ v
Noting that ¢(t) contains the functions wk(r) as multiplying
factors, and in practice pn(t) is usually taken as a simple

polynomial, there may be a question about the regularity of
the left-hand side of (40). However, according to a theorem
of Riesz [8], "every L2 kernel k(t,t) can be approximated (in
the mean) as closely as we wish by means of a kernel of finite

N
rank", i.e., k(t,t) = ) ri(t) Si(T), res S, being L2 functions,

- 1<t, t<1. If we now assume that ¢(t) may be expressed as

$(t) =7 An w(t) Pn(“’B)(r) and the functions ri(t) are regular,

the left-hand side of (40) becomes a series in r.(t) the coeffi-
cients of which contain the constants An and the expansion co-

efficients, B of si(r) in a series of Jacobi polynomials

Pn(a’s)(T)’ Si(T) =7 B. Pn(“’s)(r). In physical problems of
interest, since kij is either bounded or has at most a loga-

rithmic singularity in the interval (a,b), in principle, the
assumption (40) seems to be justified.
-20-



b b M N
£ [,i % k-ij(tsT) ¢j(T:C1‘n) dr - % Cin Pn(t)] V_im(t) dt = 0
(.i = ]s"‘sM)s (m = ],--,N) (43)

where the weight functions Vim(t) are such that either (43) is
equivalent to a least square method, or Vim(t)’ (m=1,2,---)
form a complete system in (a,b) meaning that as N - », the ap-
proximate solution ¢j(t’ci1""’ CiN) would be expected to
approach the exact solution. However, in practice, one may
also choose the weights as delta-functions, Vim(t) = a(t—tm),
(a<tm<b, m=1,--, N), simp]ifyi;g the numerical work consid-
erably at the expense of somewhat slower convergence. In the
case of « = - 1, to take into account the additional M (con-

sistency) equations (39), the number of equations in (43)

should be reduced by M by taking (m = 1,--, N-1).

In the singular integral equations of second kind with con-

stant coefficients, the fundamﬁntal functions wk(t) are weights
(a, ,8
of Jacobi polynomials P k*"k (t) if the interval (a,b) is

normalized to be (-1,1). Hence, using the properties of the
Jacobi polynomials [4,7,9] and following a procedure similar
to that of Sections 2 and 3 of this paper, a second approximate
method to solve the system of equations (26) may also be devel-

1

oped. To do this, we first premultiply (26) by A™" (assuming

]

that A is nonsingular) and diagonalize the matrix A" 'B = D

= (dij)' Let Ais Ty R be, respectively, the eigenvalues, the

-21-



eigenvectors and the modal matrix of D, i.e.,

M

RERCEENE

|ID - aI] = (-1

Dri = A5 (i = 1,--,M), R = (rij)

Substituting

o(t) = Ry(t), A = (xisij)

and using the property DR = RA, it is seen that (26) may be

written as

1 P dr .9 o1 -
o(t) + = [ aplc) “Ip+ [ RTAT K(t,1) Ry(r) de
a a
- RV AT f(t), (a<t<d) (44)

The dominant system in (44) is uncoupled and may easily
be solved to give the fundamental functions, which, assuming
that the interval (a,b) is normalized to be (-1,1), may be

written as

g Bk
w (t) = (1+t) “(1-t) 7, (k = 1,--,M), (-1<t<1) (45)
where
1 1+xk
ay = - 55 log (TTXE) vy
1 T+2

_ k
B = 7y 109 () vk

-22-



and the integers Y& and YE are chosen in such a way that the

singular behavior of wk(t) at + 1 is compatible with that of

' wk(t). Thus, the corresponding index is Kl = % - By >=1.

The approximate solution of (44) may now be written as

N (ak,Bk)

nlt) = ) e w(1) Py (t), (k = 1,--,M),

(-1<t<1) (46)

where the constants Cyp are unknown. Defining the following

matrices b
RV AT K(t,1) R = H(t,1) = (g, (£,0)), (kom = 1,--,M)
(47)
RV AT £(E) = g(t) = (g, (£)), (K = 1,--,M)
and substituting (46) into (44), we obtain
N (a,,8,) Ay | (ap+8,)
T ocp Gw(r) P TR ey e K e KT () 41
n=o
1 M N (o s8,)
+ {] mZ] hn(tst) jzo Cmj wo (1) Pj t) dr = g, (t)
(-1<t<1), (k = 1,--,M) (48)

Now, assuming that the kernels hkm(t,T), (k,m = 1,--,M) are

*
square integrable in -1<t, t<1, they may be approximated by

*
See the footnote on page 20.



(’aks'Bk)

wkmp(T) Pp

t~1"0

hkm(t,r) = (t) (49)

p=o0

where, using the orthogonality condition [9]

1
f] Pn(a,B)(t) pj(“’B)(t) w(t) dt = 0, (n # j)

(50)

o (aeB) L 2% r(neqel) rlnter) L )
n n! (2n+a+B+1) Tr{n+atg+1) J

the functions wkmp are found to be

p! (2p+c +1) r(p+l+c;)

opp ) = THe,
5

F(p+]'dk) T(P+]'Bk)

(-aker)

; () (1+t) “K(1ot) K g

]
{] hkm(t,T) p

Using the relation [4],

(a s B ) A ] (a s B )
RRCORNCORS: SR KO(o) W (o) 4o
K, + y LS (‘G s-B )
o o) KR TR T TR (51)

n‘Kk

from (48) and (49), we find
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N +Y| K ('a »-B )
k "k k k k
c,. (-1) 2 P (t)
nzo kl’l n-Kk
M E N ("(!ks_sk)
+3] ] d b (t) = g, (t)
m=1 p=0 j=o kmpj mj »p
(']<t<])a (k = ]:"9M) ' (52)
where
] (G » B )
- m m
dkmpj = !] wkmp(T) Wm(T) Pj (¢) d=

Finally, noting that in (52) the Jacobi polynomials ap-
pearing in each row have the same weight
-0
) K

-8
) k

w_ (1) = (1+t 1-t

using (50), the system of equations to determine the unknown

coefficients Crp May be obtained as

: Kk+Yi _Kk (-ak’_Bk)
(-1) 2 Ck,p+Kk ep
MN (=ap,-8;)
k>~ Bk i
+ mZ] jzo dkmpj oy Cnj ka
(k = 1"_9M)9 (p = 0,]"'N) (53)
(’aka'Bk) )
= f g, (t) Py (t) w_ (t) dt
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We again observe that, since Po(a’B)(t) = 1, in the case
of K = - 1, the equations corresponding to p = 0 in (53) are

equivalent to the following consistency conditions

1 1 M
dt _
f] [Qk(t) - {] % hkm(t’T) wm(T) dr] w—k'(—t—)' =0 (k = 1,--,M)

Of the two methods described above, the first which leads
to (43) avoids numerical work with Jacobi polynomials and

seems to be simpler than the second method leading to (53).

Finally, we note that, from the physical view point, singu-
Tar behaviors of the‘solutions of integral equations of first
and second kind are quite different. 1In the case of integral
equations of first kind, the fundamental function is the weight
of Chebishev polynomials and goes to zero or infinity smoothly
as the singular point is approached. The fundamental functions
of the integral equations of second kind, which are the weights
of Jacobi polynomials, also go to zero or infinity as the
variable approaches the singular point. However, in the lat-
ter case, since the exponents o and B, are complex (see: (32)),
in the neighborhood of the singular point, the solution exhibits
wild oscillations [10], affecting also other physical quanti-
ties. Hence, particularly in searching for an approximate so-
lution, this point requires careful consideration. For example,
the solution of the system of integral equations given in [11]

is, in this respect, incorrect. In fact, the dominant part of

-26-



the system considered in [11] is identical to that of the
integral equations found in [12], and the method of [12] or
of this paper may be used to obtain an approximate solution

of the system in [11] with the correct singular behavior.
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